NUMERICAL SOLUTION TO THE PROBLEM OF HEAT
TRANSFER IN A BED WITH PERIODIC REVERSALS OF
THE HEAT CARRIER FLOW
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A numerical solution is obtained to the problem of regenerative heat transfer in a packed
bed of granular material with a counterflow of heat carriers.

The heat transfer during periodic reversals of the heat carrier flow is very important in practical
applications, namely in heat and mass transfer processes such as, for instance, desiccation, adsorption,
extraction, etc., and in "purely" heat transfer processes as in regenerative apparatus,

Until now the mathematics of this problem has been formulated with the final value of the unknown
quantity (e.g., the bed temperature) at the end of the first period (e. g., the period of heating the bed
elements), assumed to be its initial value in the second period (cooling) and its final value in this period
taken, in turn, as its initial value in the next period, etec. This procedure has led to serious mathematical
difficulties in solving the problem and to solutions too unwieldy for practical use.

The heat transfer * during flow reversal proceeds in such a way that within a certain period of time or
at a certain location along the flow of heat absorbing (or heat emitting) material one of the heat carriers
penetrates the bed material in one direction, while within the next period (or at another location) the other
heat carrier penetrates the bed material in the opposite direction. In processes which involve heat and
mass transfer the initial parameter values of both heat carriers (their temperatures, velocities, densities,
etc.) are, as a rule, identical, but in "pure" heat transfer processes they are different.

In principle, the gist of the new approach to solving the problem of heat transfer during flow reversals
is that both heat carriers are regarded as a single one which periodically reversesits direction of flow, with
the parameter values of such a heat carrier not necessarily the same in each direction. Such a formulation
of the problem, where the interplay between the temperatures of the material during different process
periods is disregarded, makes it feasible to determine the temperature field of the heat carrier at any
instant of time and, subsequently, the temperature field of the bed material,

For this case, the system of equations describing the heat transfer in the bed during zero-gradient
heating can be written in dimensionless form as follows [1]:
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*Inasmuch as the new approach to this problem will be based mainly on a formulation of the boundary con-
ditions, it is immaterial whether it concerns heat transfer or heat and mass transfer or any other mode of
transmitting energy and matter.
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and the initial condition as
T(y, O)=ev, (4)

System (1), (2) differs from the well known equations in [2] by the factor y(z), while the boundary
condition (3) is essentially new. It has been assumed in the derivation of (1), (2) that the initial velocity of
the heat carrier (before entering the bed) is the same in both directions. This stipulation is not a matter
of principle, ihasmuch as it only simplifies the original equations (1) and (2) without making this analysis
less general but, at the same time, reflecting a situation prevalent in most practical cases. Let us, how-
ever, dwell on this matter somewhat longer. The dimensionless space coordinatey = xozF/cpvm and the di~
mensionless time coordinate z = TaF/c)(1—m) both contain quantities o, Cp» and v, which generally have
different values during the heating period and during the cooling period or, in other words, have different
values for different heat carriers. Nevertheless, in order to simplify the calculations and the subsequent
analysis, we will henceforth always assume the same values for y and z. The values of the various para-
meters of the two heat carriers at equal y and z correspond, therefore, to different x and T coordinates
during heating and cooling, i.e., at the same y and z we consider the temperatures of the heat carriers
(of the heating and of the cooling medium) and of the packing at various bed sections and at different instants
of time, the latter counted from the start of the process. As a practical matter, this will be reflected in
subsequent calculations by the stipulation that yi3 # yc at the same location x and zp # zg at the same time T.

We now introduce the ratio u = zg/zy of dimensionless cooling time to dimensionless heating time of
a dispersion bed (in the case of a regenerative heat transfer) so that the periodic step function ¥{(z) can be
expressed as
#e = | e v e 14 ®
— 1, 2y W <z<zglln 4 11+l
(n=0,1,2,3...)

Analogously, function y(z) can be written as

0, zyl + np) <z<<zylln -+ 1) + npl,
Ypr 2lln + 1)+l <z <zplln + DA+ )] (6)
n=20,1,23..).

y(z)={

Equations (1)-(6) completely describe the heat transfer in a bed of disperse material during periodic
reversals of the heat carrier flow and zerogradient heating of the bed elements. An analytical solution of
system (1)-(6) involves serious mathematical difficulties. However, if we forego a complete theoretical
analysis of the effects of various parameters on the process trend and, instead, consider only determining
the temperature field of the granular bed and of the heat carrier (gas and air), then a computer-aided
numerical solution of the problem will be entirely adequate.

For this purpose, then, we rewrite Eq. (1) as
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Fig. 2. Temperature T of the gas (1), of the air (2), and tempera-
ture © of the packing elements, as functions of the dimensionless
time z at: (A) zp = 0.722, zyg = 0.417, z¢ = 0.305, p = 0.732, and
full bed height yf, = 34, v =80, (B) 7o = 1.8, 2= 1.04, 7

= 0.76, pt = 0,924 and full bed height y; = 36.5, y& = 31.0. For
(A) at section yg = y¢ = 0 @), yg= 3.4 and yo = 3.0 (b), yy = 30.6
and y¢ = 27.0 (¢), ygy =34 and yo = 30 (d). For (B) at section
YH=Yo=0(), yg=3.65and y¢ = 3.1 (b), yg=32.85 and y¢
=27.9 (c), yg = 36.5 and y¢ = 31.0 (d).
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Through every point of the region there pass two characteristics, L; and L,, with the slopes ¥(z)/k
and 0 respectively to the z-axis (Fig. 1a). For a numerical solution it is convenient to make the following
change of variables:

1 :yfg,whereogygyf, 0sly <1,
z =z where 0Lz <2z, 0z L.

Taking this into account, we rewrite Egs. (2) and (7) as

M@ , v@z T __ e _ o6 3 8

s o o 1T D) (v 2, (®)
30 (g, 2) = = ~ =

(;g: 3 _ 4T (g, 5 — O (7, 2) 9)

According to Fig. la, 1§(z)zp/kys) = 1, i.e., after the change of variables characteristic Ly will be
inclined to the z-axis at a 45° angle.
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TABLE 1. Values of the Final Average-Over-the-Period Gas and

Air Temperature

Dimensionless time Dimensionléss bed } Final average-~over-
T q | the-period tempera-
of heating of cooling Length |height [ _tures
0 f i ¢ [of eyelforheat- fforcool- during ,dunlng
start Zyy, lend z;, |start z end z. heating jcooling
H C Ze - _
H C rng Yy ing yc Ty Te
10,108 | 10,525 | 10,525 10,83 | 0 722 62,0 52,0 0,214 0,834
16,464 | 17,07 17,07 17,64 | 1,176 60,0 60,0 0,170 0,879
15,3 26,34 26,34 27,1 1,803 60,9 51,6 0,163 0,916
Thus, instead of (8), we have now
T (y, 2 aT (y, 2) z — = - =
— 2 4y =R Ty, ) —0(y, I 1
FR 3 5 T 2 21 (10)

We will now consider the heating period. The differentials of functions T and ® for Egs. (10) and (9)
along curves Iy and L, are respectively equal to [3]

dr; = — AT — @) he = — y, (T, — ),

de; =z (T — 0,) A,
masmuch as yg= z/k because §(z) = + 1 during the heatmg period. Since y and z vary within the range 0 <
y or z< 1 when 0 = y= y¢ and 0 == zZ= zyy respectively, hence y and z can be subdivided into equal numbers
of intervals (Fig. 1b). In the resulting grid j denotes the number of a vertical strip and i denotes the number
of a horizontal strip, withi=0,1,2,... andj=0,1,2,... representing respectively equidistant values of
arguments y and z at an interval h. Knowing the values of T and 0 along the j-th vertical, we compute their
values in the direction of the characteristics along j + 1, etc. until the value z; = z;/zy has been reached.

Since the last strip before z does not exactly hit point zpy, we extrapolate to point zy on the basis of the
last two strips.

Computations are made according to the Euler method with the following conversions [4]:

dT; = — (Ti,j - ei,j) yfhy,z)
Ty =T ;— To;— 0, ) yshy.,
d8; = (Ti41,5 — ©14a,1) Bfty.r
8; = 81+1 it (Tz+1,1 i+1,j) Zth,z,
dT; = — (T; — 0, y¢hy .,
d0; = (T; — 0)) a4t
dT; + dT;
Ti+1,j+1 = Ti,j -+ g
d8; -+ de;
®i+1,i+1 = @i+1,j + Ty -
40 [
¥}
NN L2 -
PN 7 Fig. 3. Temperature profile ® of
4 the packing elements and T of the
96— ' i gas and the air, across the bed
S height y after 24 cycles of dimen-
NN sionless heating time z = 17.02 and
o imensi ling time z = 17.33
N dimensionless cooling time
\ \ (process parameters the same as in
92 \ Fig. 2A): heating T (1) and @ (2),
“ ‘| cooling T (3) and @ (4).
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At y = 0 one computes only ® with the value of T given; at the initial time (z = 0) the values of both T
and @ are given.

For the cooling period, when §(z) = —1, the computations are analogous.

On the basis of the preceding relations, the authors have used a model M-220 computer for determining
the temperature field of a disperse packing and of the heat carrier in time z and coordinate y (bed height).
The computations were made for the regenerative mode of heat transfer during a counterflow of two heat
carriers in a rotary heat exchanger, with two cycles per rotor revolution (one cycle consisting of a heating
and a cooling period), the basic parameters varied over the following ranges: dimensionless initial tem-
perature of the heat carrier Ty = 1, dimensionless initial temperature of the cooling air T¢ = 0.018, di-~
mensionless bed height for heating yy = 32-62 and for cooling y¢ = 32-52, dimensionless cycle time z,
= 0.235-1.8, dimensionless heating time zp = 0.117-1.04, dimensionless cooling time z¢ = 0.117-0.763, rotor
speed n = 1.0-7.5 rpm, the heating and the cooling periods Ty = T¢ = 1.5-11.25 sec.

Some results of the computations are shown graphically in Figs 2 and 3 in the form of relations
T=1(z), ® =1(z), T=£y), and ®@= £(y).

In practical terms, most significant is the temperature as a function of time for the end sections of
a bed, inasmuch as the temperature trend there characterizes the thermal efficiency of the apparatus. For
this reascn, in Fig. 2 are also shown temperature curves for the entrance section and the exit section of a
bed. According to the diagram, the initial gas temperature (at y = 0) and air temperature (aty = yg) are
constant quantities (straight lines la, 2d) with respect to the boundary conditions; the temperature of bed
components increases during every cycle from the very start of the heat transfer process within the initial
bed segments (Fig. 2, curve 3a), while the packing temperature rises during the heating periods and
naturally drops during the cooling periods. Of all the curves shown in Fig. 2, the largest number of cycles
was computed for curves in Fig. 2A. In the last cycle here (z = 16.6-17.02, curve 3a) the packing tempera-
ture at section y = 0 is highest, approximately ® = 0.954. The lowest packing temperature of the final

section (yH 32.0) during the heating period is ®% = 0.104 in the last cycle, while the mean temperature
at this section is ®H 0.118 and the temperature difference across the height A@H ®H @fH = 0.954

—0.118 = 0.836 is thus quite appreciable. At the same time, the temperature variation in every packing
section is rather small within one period and a curve drawn through the test points (e. g. ., the dashed line
in Fig. 2A) indicates an exponential temperature change with an asymptotic approach to a constant steady-
state level. At section x =y = 0 the air temperature also rises continuously and, toward the end of the
last cycle, reaches rather high average (over the cooling cycle) levels of 0.897 (Fig. 2A, curve 2a}, 0.857
(Fig. 2B, curve 2a), and 0.908. Thig is the final and thus alsc the highest air ftemperature. During each
period, characteristically, the temperature of bed components and gases (air) varies linearly or very
nearly so.

Wide fluctuations of the packing temperature during heating and cooling are noted atthe end sections
(y = 0 and y = yg), where the heat transfer rate is highest. The temperature profiles of the packing, the
gas, and the air across the bed height are shown comprehensively in Fig. 3. The temperature curves are
steep here with respect to the y-axis for the initial bed segments, become flatter for the middle portion,
and then again steeper for the final segments. With the parameter values given in Fig. 3, the heat transfer
in the middle portion of the bed is still slow after 23 cycles (z = 16.6); in this case, evidently, the bed is
too high.

In the transient state, the final temperatures of gas and hot air are appreciably affected by different
cycle lengths at about the same bed height y = 32. For the 13th cycle at zg = 0.235, for example, the
average-over-the~-period temperatures are T (gas) = 0.341 and T (air) = 0.742; at z, = 1.176 we have
Ty = 0.193 and T = 0.857; at z¢ = 1.807 we have Ty = 0.172 and Tg = 0.908. Thus, while z; changes from
0.235 to 1.803, i.e., by a factor of 7.7, the final gas temperature changes from 0.341 to 0.172 or by 0.169
and the final air temperature changes from 0 .742 to 0.908 or by 0.166; the difference is therefore, large.
If the initial gas temperature were 2000°C, for example, then, after the said extension of the cycle length,
the final gas temperature would drop by 338°C and the final air temperature would rise by 332°C, i.e., this
difference would become appreciable in high-temperature processes.

An analogous pattern is noted also at large values of the dimensionless bed height, after the same
number of cycles since the apparatus has started to operate. Data for the 15th cycle are given in Table 1.
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With approximately the same bed height, according to the table, the gas temperature is lowered by
0.214-0.163 = 0.051 and the air temperature is raised by 0.916-0.854 = 0.062 when the cycle length is ex-
tended from 0.722 to 1.807 or by a factor of 2.5,

Consequently, an extension of the cycle length within definite limits will, with the bed height as
given here, cause a drop in the final temperature of existing gas and a corresponding rise in the tempera-
tare of heated air. It is to be noted, however, that, after the same number of cycles, the heat transfer
time becomes much longer during a longer cycle. After 15 cycles, for example, z = 10,83 with z, = 0.722
and z = 27.1 with z, = 1.857. This affects the final temperatures of heat carriers during the transient
only, if the comparison is based on the same number of cycles. During the steady state, the number of
regenerator cycles since the start does not affect the temperature field.
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Subscripts

H refers to heating;
C refers to cooling;
¢ refers to cycle.

Superscripts:

o
f

B
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refers to initial value;
refers to final value.

NOTATION

is the dimensionless height (thickness) of disperse packing bed;
is the dimensionless time;

is the dimensionless temperature of bed elements;

is the dimensionless temperature of heat carrier;

is the specific heat (on volume basis) of heat carrier, keal/m®’°C;

is the specific heat of packing elements, kecal/m?3-°C;

is the specific surface of particles per unit bed volume, m?/m?;

is the bed porosity, m?/m?

is the instantaneous temperature of heat carrier, °C;

is the instantaneous temperature of bed elements, °C;

is the space coordinate along fluid flow;

is the true filtration velocity of heat carrier through bed, m/h;

is the coefficient of heat transfer from heat carrier to surface of bed particles,
keal/m?* h-°C;

is the time, h.
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